(-5x-1)/4-(3x^2-x)/x=5

Simple and best practice solution for (-5x-1)/4-(3x^2-x)/x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-5x-1)/4-(3x^2-x)/x=5 equation:



(-5x-1)/4-(3x^2-x)/x=5
We move all terms to the left:
(-5x-1)/4-(3x^2-x)/x-(5)=0
Domain of the equation: x!=0
x∈R
We calculate fractions
(-5x^2-1x)/4x+(-12x^2+4x)/4x-5=0
We multiply all the terms by the denominator
(-5x^2-1x)+(-12x^2+4x)-5*4x=0
Wy multiply elements
(-5x^2-1x)+(-12x^2+4x)-20x=0
We get rid of parentheses
-5x^2-12x^2-1x+4x-20x=0
We add all the numbers together, and all the variables
-17x^2-17x=0
a = -17; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·(-17)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*-17}=\frac{0}{-34} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*-17}=\frac{34}{-34} =-1 $

See similar equations:

| 7=−4a | | Y=41+x2 | | a2–5a–10=0 | | 5=100=x | | 3-15x+24+16x=4x-24-4x | | 5/25=10x | | 20=-8x+4(x+4) | | 30=7(v-5)+6v | | -x+4=38 | | 16-5x=-12 | | 7(5x+2)=5x+2 | | y-12.5=14 | | x+2.3=4.5 | | x+3.3=4.5 | | s/4−–11=12 | | n/4+-9=-6 | | (3/2b)-(3/5b)=1 | | (3/2b)-(3/5b)=1 | | 6x+14x+8=0 | | 6x+14x+8=0 | | 6x+14x+8=0 | | 0.4*3=x*4 | | P=2x+44 | | 0.4x3=Xx4 | | 10y=1000003y= | | 10y=1000003y= | | 0.4.x3=Xx4 | | 6x+12=36-4x | | 3(3x+2)/4=x+38/2 | | 3(3x+2)/4=x+38/2 | | 9/3x=2 | | 9/3x=2 |

Equations solver categories